Influence of thermodynamically unfavorable secondary structures on DNA hybridization kinetics

نویسندگان

  • Hiroaki Hata
  • Tetsuro Kitajima
  • Akira Suyama
چکیده

Nucleic acid secondary structure plays an important role in nucleic acid-nucleic acid recognition/hybridization processes, and is also a vital consideration in DNA nanotechnology. Although the influence of stable secondary structures on hybridization kinetics has been characterized, unstable secondary structures, which show positive ΔG° with self-folding, can also form, and their effects have not been systematically investigated. Such thermodynamically unfavorable secondary structures should not be ignored in DNA hybridization kinetics, especially under isothermal conditions. Here, we report that positive ΔG° secondary structures can change the hybridization rate by two-orders of magnitude, despite the fact that their hybridization obeyed second-order reaction kinetics. The temperature dependence of hybridization rates showed non-Arrhenius behavior; thus, their hybridization is considered to be nucleation limited. We derived a model describing how ΔG° positive secondary structures affect hybridization kinetics in stopped-flow experiments with 47 pairs of oligonucleotides. The calculated hybridization rates, which were based on the model, quantitatively agreed with the experimental rate constant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of secondary structure on kinetics and reaction mechanism of DNA hybridization

Hybridization of nucleic acids with secondary structure is involved in many biological processes and technological applications. To gain more insight into its mechanism, we have investigated the kinetics of DNA hybridization/denaturation via fluorescence resonance energy transfer (FRET) on perfectly matched and single-base-mismatched DNA strands. DNA hybridization shows non-Arrhenius behavior. ...

متن کامل

On-chip hybridization kinetics for optimization of gene expression experiments.

DNA microarray technology is a powerful tool for getting an overview of gene expression in biological samples. Although the successful use of microarray-based expression analysis was demonstrated in a number of applications, the main problem with this approach is the fact that expression levels deduced from hybridization experiments do not necessarily correlate with RNA concentrations. Moreover...

متن کامل

Comparative study of sequence-dependent hybridization kinetics in solution and on microspheres

Hybridization kinetics of DNA sequences with known secondary structures and random sequences designed with similar melting temperatures were studied in solution and when one strand was bound to 5 mum silica microspheres. The rates of hybridization followed second-order kinetics and were measured spectrophotometrically in solution and fluorometrically in the solid phase. In solution, the rate co...

متن کامل

شناسایی ژنوتیپهای تریتی پایرم ثانویه با هیبریداسیونDNA ژنومی در محل (GISH)

The genomic in situ hybridization (GISH) has been used to identify euploidy and aneuploidy in segregation generations of various plants. In this study, the GISH with minor modifications including, slide preparation of putative secondary Tritipyrum (F2) root meristemic cells, labeled genomic DNA of Thinopyrum bessarabicum by fluorescein 12-dUTP nucleotide as probe, genomic DNA of Thinopyrum bess...

متن کامل

شناسایی ژنوتیپهای تریتی پایرم ثانویه با هیبریداسیونDNA ژنومی در محل (GISH)

The genomic in situ hybridization (GISH) has been used to identify euploidy and aneuploidy in segregation generations of various plants. In this study, the GISH with minor modifications including, slide preparation of putative secondary Tritipyrum (F2) root meristemic cells, labeled genomic DNA of Thinopyrum bessarabicum by fluorescein 12-dUTP nucleotide as probe, genomic DNA of Thinopyrum bess...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2018